
Math 2050, quick note of Week 2

1. Density of Rational and Irrational numbers on R

From numerical point of view, we approximate
√

2 by 1.41421356237....Pre-
cisely, what we are doing is: finding a sequence of rational number,
namely

(1.1)


a1 = 1;
a2 = 1.4;
a3 = 1.41;
a4 = 1.414...

so that an gets closer and closer to ”THE” number
√

2 which is the
abstract number obtained from completeness. This suggests a density
nature of Q. And here is the general result.

Theorem 1.1 (Density of rational number). For all x, y ∈ R such that
x < y, we can find q ∈ Q such that q ∈ (x, y).

Example: We have

sup{q ∈ Q : q2 < 2, q > 0} =
√

2 ∈ R \Q.

(We can think of R as the minimal completion of Q so that the ”missing
hole” is filled.)

And similarly, the irrational number is also dense.

Theorem 1.2 (Density of rational number). For all x, y ∈ R such that
x < y, we can find q /∈ Q such that q ∈ (x, y).

And hence irrational number are also ”almost everywhere” inside R.

2. Intervals

For notational convenience, we will use

(1) (a, b) = {x : a < x < b};
(2) [a, b) = {x : a ≤ x < b};
(3) (a, b] = {x : a < x ≤ b};
(4) [a, b] = {x : a ≤ x ≤ b};
(5) (a,+∞) = {x : a < x};
(6) [a,+∞) = {x : a ≤ x};
(7) (−∞, b) = {x : x < b};
(8) (−∞, b] = {x : x ≤ b};
(9) (−∞,+∞) = R.
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Hence, we can rephrase density as ”Any non-empty open interval
contains element in Q and Qc.”

Question: How do we determine whether a subset of R is a interval
or not?

Theorem 2.1 (Characterization of Interval). If S is a non-empty sub-
set of R such that S contains two distinct real numbers and satisfies
the following property:

For any x, y ∈ S, we have [x, y] ⊂ S;

then S is an interval.

2.1. Special type of intervals. For a sequence of interval {In}∞n=1.
We say that the sequence is nested if

Ik ⊂ Ik−1

for all k ≥ 1. In particular, the sequence is ”decreasing”.

Example: In = (0, 1
n
), then ∩∞n=1In = ∅. This is because if x ∈ In

for all n, then

0 < x <
1

n
.

But this contradicts with the Archimedean property.

Example: In = [0, 1
n
), then ∩∞n=1In = {0} since for x ∈ ∩∞n=1In, we

have for all n that

0 ≤ x <
1

n
.

Clearly, 0 satisfies the above. And from Archimedean property, pos-
itive number fails to satisfies it and hence the assertion holds.

Example: In = [n,+∞), then ∩∞n=1In = ∅ since for x ∈ ∩∞n=1In, we
have for all n that

x ≥ n

which contradicts with the Archimedean property.

The above examples show that for a nested interval to have common
intersection, it is necessary that

(a) In are bounded;
(b) In are closed,

for all n. It turns out to be sufficient as well:

Theorem 2.2 (Nested Interval Theorem). Suppose {In = [an, bn]}∞n=1

is a sequence of nested, closed and bounded interval on R, then ∩∞n=1In
is non-empty. Moreover, if inf{bn−an} = 0, then ∩∞n=1In is a singleton.
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Remark 2.1. For those who are interested in ”Axiomatic” construction
of R, one can replace the completeness axiom of R by ”Archimedean
property and Nested Interval Property”. The constructed R̃ will be
identical to the construction using completeness axiom. Google it if
you want to know!

Theorem 2.3. [0, 1] is uncountable.

Proof. Suppose [0, 1] is countable. That is to say that the set [0, 1] is
enumerative:

[0, 1] = {xn}∞n=1.

Our goal is to construct some sequence which contradicts with some-
thing. We now construct a sequence of interval {In}∞n=1 which are
nested, closed and bounded.

Step 0. We choose I0 = [0, 1].

Step 1. Considering x1 ∈ [0, 1], we choose a subinterval I1 ⊂ I0
such that I0 is closed and x1 /∈ I1. This is possible since x1 is simply a
point!

Step 2. Considering x2 ∈ [0, 1]. If x2 /∈ I1, then we take I2 = I1.
Otherwise, we find a subinterval I2 ⊂ I1 such that I2 is closed and
x2 /∈ I2.
· · · · · · · · · · · ·
Step k, k > 2. Consider xk ∈ [0, 1]. If xk /∈ Ik−1, then we take

Ik = Ik−1. Otherwise, we find a subinterval Ik ⊂ Ik−1 such that Ik is
closed and xk /∈ Ik.

(We are doing each steps ONE BY ONE!)

In this way, {In}∞n=1 is a sequence of nested interval which are closed
and bounded. Hence, Nested Interval Theorem implies η ∈ ∩∞n=1In ⊂
I0 = [0, 1]. By our assumption, η = xN for some N since [0, 1] =
{xn}∞n=1. This implies

xN ∈ IN ∩ IcN
which is impossible.
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