Math 2050, quick note of Week 2

1. Density of Rational and Irrational numbers on $\mathbb R$

From numerical point of view, we approximate $\sqrt{2}$ by 1.41421356237....Precisely, what we are doing is: finding a sequence of rational number, namely

...

(1.1)
$$\begin{cases} a_1 = 1; \\ a_2 = 1.4; \\ a_3 = 1.41; \\ a_4 = 1.414. \end{cases}$$

so that a_n gets closer and closer to "THE" number $\sqrt{2}$ which is the abstract number obtained from completeness. This suggests a density nature of \mathbb{Q} . And here is the general result.

Theorem 1.1 (Density of rational number). For all $x, y \in \mathbb{R}$ such that x < y, we can find $q \in \mathbb{Q}$ such that $q \in (x, y)$.

Example: We have

$$\sup\{q \in \mathbb{Q} : q^2 < 2, q > 0\} = \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}.$$

(We can think of \mathbb{R} as the minimal completion of \mathbb{Q} so that the "missing hole" is filled.)

And similarly, the irrational number is also dense.

Theorem 1.2 (Density of rational number). For all $x, y \in \mathbb{R}$ such that x < y, we can find $q \notin \mathbb{Q}$ such that $q \in (x, y)$.

And hence irrational number are also "almost everywhere" inside \mathbb{R} .

2. Intervals

For notational convenience, we will use

 $(1) (a,b) = \{x : a < x < b\};$ $(2) [a,b) = \{x : a \le x < b\};$ $(3) (a,b] = \{x : a \le x \le b\};$ $(4) [a,b] = \{x : a \le x \le b\};$ $(5) (a,+\infty) = \{x : a \le x\};$ $(6) [a,+\infty) = \{x : a \le x\};$ $(7) (-\infty,b) = \{x : x < b\};$ $(8) (-\infty,b] = \{x : x \le b\};$ $(9) (-\infty,+\infty) = \mathbb{R}.$ Hence, we can rephrase density as "Any non-empty open interval contains element in \mathbb{Q} and \mathbb{Q}^{c} ."

Question: How do we determine whether a subset of \mathbb{R} is a interval or not?

Theorem 2.1 (Characterization of Interval). If S is a non-empty subset of \mathbb{R} such that S contains two distinct real numbers and satisfies the following property:

For any $x, y \in S$, we have $[x, y] \subset S$;

then S is an interval.

2.1. Special type of intervals. For a sequence of interval $\{I_n\}_{n=1}^{\infty}$. We say that the sequence is nested if

$$I_k \subset I_{k-1}$$

for all $k \geq 1$. In particular, the sequence is "decreasing".

Example: $I_n = (0, \frac{1}{n})$, then $\bigcap_{n=1}^{\infty} I_n = \emptyset$. This is because if $x \in I_n$ for all n, then

$$0 < x < \frac{1}{n}.$$

But this contradicts with the Archimedean property.

Example: $I_n = [0, \frac{1}{n})$, then $\bigcap_{n=1}^{\infty} I_n = \{0\}$ since for $x \in \bigcap_{n=1}^{\infty} I_n$, we have for all *n* that

$$0 \le x < \frac{1}{n}.$$

Clearly, 0 satisfies the above. And from Archimedean property, positive number fails to satisfies it and hence the assertion holds.

Example: $I_n = [n, +\infty)$, then $\bigcap_{n=1}^{\infty} I_n = \emptyset$ since for $x \in \bigcap_{n=1}^{\infty} I_n$, we have for all *n* that

$$x \ge n$$

which contradicts with the Archimedean property.

The above examples show that for a nested interval to have common intersection, it is necessary that

(a) I_n are bounded;

(b) I_n are closed,

for all n. It turns out to be sufficient as well:

Theorem 2.2 (Nested Interval Theorem). Suppose $\{I_n = [a_n, b_n]\}_{n=1}^{\infty}$ is a sequence of nested, closed and bounded interval on \mathbb{R} , then $\bigcap_{n=1}^{\infty} I_n$ is non-empty. Moreover, if $\inf\{b_n - a_n\} = 0$, then $\bigcap_{n=1}^{\infty} I_n$ is a singleton.

 $\mathbf{2}$

Remark 2.1. For those who are interested in "Axiomatic" construction of \mathbb{R} , one can replace the completeness axiom of \mathbb{R} by "Archimedean property and Nested Interval Property". The constructed \mathbb{R} will be identical to the construction using completeness axiom. Google it if you want to know!

Theorem 2.3. [0,1] is uncountable.

Proof. Suppose [0, 1] is countable. That is to say that the set [0, 1] is enumerative:

$$[0,1] = \{x_n\}_{n=1}^{\infty}$$

Our goal is to construct some sequence which contradicts with something. We now construct a sequence of interval $\{I_n\}_{n=1}^{\infty}$ which are nested, closed and bounded.

Step 0. We choose $I_0 = [0, 1]$.

Step 1. Considering $x_1 \in [0, 1]$, we choose a subinterval $I_1 \subset I_0$ such that I_0 is closed and $x_1 \notin I_1$. This is possible since x_1 is simply a point!

Step 2. Considering $x_2 \in [0, 1]$. If $x_2 \notin I_1$, then we take $I_2 = I_1$. Otherwise, we find a subinterval $I_2 \subset I_1$ such that I_2 is closed and $x_2 \notin I_2$.

Step k, k > 2. Consider $x_k \in [0, 1]$. If $x_k \notin I_{k-1}$, then we take $I_k = I_{k-1}$. Otherwise, we find a subinterval $I_k \subset I_{k-1}$ such that I_k is closed and $x_k \notin I_k$.

(We are doing each steps ONE BY ONE!)

In this way, $\{I_n\}_{n=1}^{\infty}$ is a sequence of nested interval which are closed and bounded. Hence, Nested Interval Theorem implies $\eta \in \bigcap_{n=1}^{\infty} I_n \subset I_0 = [0, 1]$. By our assumption, $\eta = x_N$ for some N since $[0, 1] = \{x_n\}_{n=1}^{\infty}$. This implies

$$x_N \in I_N \cap I_N^c$$

which is impossible.

^{.}