Math 2050, quick note of Week 2

1. DENSITY OF RATIONAL AND IRRATIONAL NUMBERS ON R

From numerical point of view, we approximate v/2 by 1.41421356237....Pre-
cisely, what we are doing is: finding a sequence of rational number,
namely

a; = 1,

as = 1.4;
(1.1) as = 1.41;

ay = 1.414...

so that a, gets closer and closer to "THE” number V2 which is the
abstract number obtained from completeness. This suggests a density
nature of Q. And here is the general result.

Theorem 1.1 (Density of rational number). For all x,y € R such that
x <y, we can find q € Q such that q € (x,y).
Example: We have

sup{geQ:¢* <2,¢q>0} =v2eR\Q.

(We can think of R as the minimal completion of Q so that the "missing
hole” is filled.)

And similarly, the irrational number is also dense.

Theorem 1.2 (Density of rational number). For all z,y € R such that
x <y, we can find q ¢ Q such that q € (x,y).

And hence irrational number are also ”almost everywhere” inside R.

2. INTERVALS

For notational convenience, we will use

la,b) = {zx:a <z <b};
(a,b] ={z:a <z <b};
{z:a<z<b}

={z:a <z}
{

)
(—00,b) ={x:z <b};
(—00,b] = {z:x < b};
(—o0,+00) =R



Hence, we can rephrase density as ”Any non-empty open interval
contains element in Q and Q°.”

Question: How do we determine whether a subset of R is a interval
or not?

Theorem 2.1 (Characterization of Interval). If S is a non-empty sub-
set of R such that S contains two distinct real numbers and satisfies
the following property:

For any x,y € S, we have [z,y] C S;
then S is an interval.
2.1. Special type of intervals. For a sequence of interval {I,}5°;.
We say that the sequence is nested if
I, C I 4
for all £ > 1. In particular, the sequence is ”decreasing”.

Example: [, = (0, %), then N2, 7, = (. This is because if z € I,
for all n, then

1
O<a < —.

n
But this contradicts with the Archimedean property.

Example: [, = [0, 1), then N2, 1, = {0} since for x € N2, 1, we
have for all n that {
0<z < —.
n
Clearly, 0 satisfies the above. And from Archimedean property, pos-
itive number fails to satisfies it and hence the assertion holds.

Example: I, = [n,+00), then N, I,, = () since for x € N2, I,,, we
have for all n that
T>n
which contradicts with the Archimedean property.
The above examples show that for a nested interval to have common
intersection, it is necessary that

(a) I,, are bounded;
(b) I,, are closed,

for all n. It turns out to be sufficient as well:

Theorem 2.2 (Nested Interval Theorem). Suppose {I,, = [an, by)}22,
15 a sequence of nested, closed and bounded interval on R, then M1,
is non-empty. Moreover, if inf{b,—a,} = 0, then N2, I,, is a singleton.
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Remark 2.1. For those who are interested in ” Axiomatic” construction
of R, one can replace the completeness axiom of R by ” Archimedean
property and Nested Interval Property”. The constructed R will be
identical to the construction using completeness axiom. Google it if
you want to know!

Theorem 2.3. [0, 1] is uncountable.

Proof. Suppose [0,1] is countable. That is to say that the set [0, 1] is
enumerative:
[0,1] = {zn};21-
Our goal is to construct some sequence which contradicts with some-
thing. We now construct a sequence of interval {I,}°°, which are

nested, closed and bounded.
Step 0. We choose [, = [0, 1].

Step 1. Considering z; € [0,1], we choose a subinterval I; C I
such that [y is closed and z; ¢ I;. This is possible since x; is simply a
point!

Step 2. Considering xzo € [0,1]. If xo ¢ I, then we take Iy = I.
Otherwise, we find a subinterval I, C I; such that Iy is closed and
i) ¢ [2.

Step k,k > 2. Consider z; € [0,1]. If z; ¢ I;_;, then we take
I, = I,_1. Otherwise, we find a subinterval I, C I,_; such that [} is
closed and xy ¢ Ij.

(We are doing each steps ONE BY ONE!)

In this way, {I,}5°, is a sequence of nested interval which are closed
and bounded. Hence, Nested Interval Theorem implies n € N> 1, C
Iy = [0,1]. By our assumption, n = xy for some N since [0,1] =
{z,}5%,. This implies

zy € In N []CV
which is impossible.



